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POISSON'S RATIO FOR POLED ELECTROCERAMICS

Abstract

General expressions for Poisson’s ratio are derived for arbitrary
orientations in hexagonal point groups; simplified forms are given for cases
involving symmetry directions. Applications are made to piezoelectric ceramics.

Introduction

Poisson’s ratio, v, is defined for isotropic media as the quotient of lateral
contraction to longitudinal extension arising from application of a simple tensile
stress. The ratio finds application in a number of areas of applied elasticity and
solid mechanics, for example, as indication of the mechanical coupling between
various vibrational modes of motion. Future high-tech applications will involve
mechanically resonant microstructures integrated with electronic and optical
circuitry. These will require extension of Poisson’s ratio considerations to a variety
of crystalline and polycrystalline substances.

In most materials, the dimensionless numberv is positive. In crystals and
poled electroceramics, v takes on different values, depending on the directions of
stress and strain chosen. The maximum value of v = +1/2 is obtained in the
incompressible medium limit, where volume is preserved; for ordinary materials,
values of +1/4 to +1/3 are typical, but in crystals v may vanish, or take on
negative values. In order to provide a synoptic yet relatively uncomplicated
picture, Figure 1 sketches the bounds on v as function of the traditional Lamé
constants of an isotropic medium. Table 1 relates various elastic measures for
substances or conditions indicated in the figure, or discussed in the sequel.
Analytical formulas for Poisson’s ratio are expressed in terms of elastic moduli.
For the case of crystals of general anisotropy, these expressions are quite
unwieldy, but for substances in the hexagonal system the symmetry elements
reduce the complexity considerably. Many of the materials under consideration for

future microdevices are characterized by hexagonal symmetry.| Accesion For
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The hexagonal crystal system1‘3 comprises seven point groups (6-bar m2,
622, 6mm, 6/m mm, 6-bar, 6, and 6/m), and includes a number of the binary
semiconductor systems, and their alloys. These have the piezoelectric wurtzite
structure; examples are GaN and AIN. The family of poled electroceramics,
including BaTiO,, PZT, and related alloys are characterized by symmetrycomm,
that is, they are transversely isotropic. However, this symmetry |s equivalent to
6mm for all tensor properties up to and including rank five;* this includes
elasticity. All hexagonal groups have the same elastic matrix scheme, so for our
purposes it is not necessary to distinguish between them.

Expressions Relating Hexagonal Stiffness nd Complian

Relations for Poisson’'s ratio are most simply expressed in terms of the
elastic compliances [s,,]. It is often the case, however, that the most accurate
determinations of the elastic constants (resonator and transit-time methods) yield
values for the stiffnesses [c,,] directly,5 the conversion relations are given below.
For the hexagonal system, the elastic stiffness and compliance matrices have
identical form. Referred to the x, axes as defined in the IEEE Standard,® the
matrices are:

Cit C2 &3 0 0 O si1 S22 s3 0 0 O
Ciz Cy C3 O 0 0 Si2 Sy1 S13 O 0 0
Ci3 C3 C 0 O 0 Sy3 S;3 Sz O 0 0
0 0 0 Cyq 0 0 0 0 0 S44 0 0
0 0 0 0 Cu O 0 0 0 0 Sy O
0 0 0 0 0 Ces 0 0 0 0 0 Se6

Stiffness and compliance are matrix reciprocals; the five independent components
of each are related by:

(C11+ Cqp) =833/ S, (C11-Ci2) =1/ (S41-812)
C13=-843/8S,; C33 =(S11+812)/S
Cagy=1/844; S =83(511+817) -2 s13

In addition, one has the relation sgg= 2(s41 - $12). The compliances are given in
terms of the stiffnesses simply by interchange of symbols, but with cgg = (C44-
¢12)/2. The equality of the 11 and 22 components together with the given relations
between the 66, 11 and 12 components imply transverse isotropy; that is, all
directions perpendicular to the unique six-fold axis (i.e., in the basal plane) are
elastically equivalent.
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Figure 1. Limits on the Lamé constants of isotropic solids.
(Symbols: C, cement; G, gas; GL, glass; I'., incompressible
liquid; L, liquid; M, metal, ceramic; P, plastic; R, rubber;
V, vacuum)
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TABLE 1. RELATIONS AMONG ISOTROPIC ELASTIC PARAMETERS.

SUBSTANCE OR v n m Y X | Ver/Viong
CONDITION
Ideal fluids 12 A 0 0 A 0
Many metals 1/3 2n p 8w3 |8u3 1/2
Poisson relation 114 m po [5w2 [5w3 | 1W3
Pure rigidity 0 0 n[2p [2w3 | 1N2
Perfect compressibility -1 [2wW3 | n 0 0 \3/2
Incompressible liquids 1/2 © 0 0 © 0

—-— e 0] o0 (e 0} [e o] —

Incompressible solids

[Vsh/Viongl is ratio of shear to longitudinal wave velocities




Definition of Poisson’s Ratio for stal

Poisson'’s ratio for crystals1 is defined in general asv; = - 5§’ /' s, where
is the direction of the longitudinal extension, x; is the direction of the
accompanying lateral contraction, and the s;’ and s;’ are the appropriate elastic
compliances referred to this right-handed axial set. It suffices to take x,as the
direction of the longitudinal extension; then two Poisson’s ratios are defined by
the orientations of the lateral axes X, and Xs: voq = - 845’ / 841" @and va; = - 843" / 544",
Application of the definition requires specification of the orientation of the x
coordinate set with respect to the crystallographic directions, and transformation
of the compliances accordingly. The influence of piezoelectricity on the Poisson’s
ratio is neglected here, but may be incorporated in a straightforward manner. For
completeness, we note that in crystals the Young's modulus Y is a function of
orientation, and is defined by s;,’ = 1/Y. The Lamé modulix, pn for isotropic elastic
bodies are defined as A = cj5 = Cy3 = Cy3, and pu = Cy4y = Cs5 = Cgg. 1 hE remaining
nonzero isotropic stiffnesses are (A + 2 pu) = Cy1 = Cyp = Caa.

Relations for Rotated Hexagonal Compliances - General
The unprimed compliances are referred to a set of right-handed orthogonal

axes related to the crystallographic axes in the manner defined by the IEEE
standard.’ Direction cosines a,, relate the transformation from these axes to the
set specifying the directions of the applied longitudinal extension (x;), and the
resulting lateral contractions (x, and x,). General expressions for the transformed
hexagonal compliances that enter the formulas for v,; and v, are:
St1' = Sy [@41 2 + @12 2T + S3[a13“] + (544 + 2 543) [243][a4 2+ a5,
S12' = Syq [@41 @y + 28] + S33[a413° 83 7] +

S44 [813 Ap3)[as @1 + @12 Ax0) + S92 [Ag1822- 242 anl’ +

Stz [A3 2 [ay1 2 + @y ] + ag3 % [ay 2+ 2]

- 2 2 2

S13' = Sq1 [a41 @31 + @gp83]" +sa3fag3 @z +

: 2
S4q [@13 @33)[a11 @3¢ + Q12 @5)) +Sqp [agg @52 - @8] +

2 2 2 2 2 241 -
Si3lass“[ap "+ a1 +a3" [a31 " +az ]




Transformation Matrix for General Rotations

Poisson’s ratio for the most general case may be derived by considering
the transformation matrix for a combination of three coordinate rotations: a first
rotation about x5 by angle ¢, a second rotation about the new x, by angle6, and a
third rotation about the resulting x, by angle y. When these angles are set to
zero, the x4, Xy, X3 axes coincide respectively with the reference crystallographic
directions. For nonzero angles, the direction cosines a,, are as follows, with the
abbreviations ¢c(6) and s(0) for cos(6) and sin(8), etc.:

[c(@)c(y) - s(9)s(8)s(w)] [s(e)c(w) +C(¢)S(9)S(w)] [ - c(©)s(w)]
[ - s(e)c(0)] [c(e)c(0)] [ s@®) 1
[c(@)s(y) +s(9)s()c(w)] [s(p)s(y) - c(@)s(B)c(w)] [ c@®)c(yw)]

Substitution of these a,,, into the expressions for s,;’, s45’, and s;3’, and
thence into the formulas v,y = - 845’ / 841" and vay = - 845’ / 544 formally solves the
problem for specified values of ¢, 6, and y. The condition of transverse isotropy
stated above, however, renders all results independent of azimuthal angle o,
which is henceforth ignored.

Poisson’s Ratios for Specific Orientations

1) Longitudinal extension in the basal plane: y = 0 ; 6 arbitrary.
Direction cosines are: ayy = 1; a5, = @33 = ¢(0); a4, = - a1 = 5(0)

Rotated compliances are:
S11’ = Sq4
S17' = Sy, €087 (B) + 843 SiN” (6) = Sy + (S13 - S12) Sin” ()

Stz = Sy Sin? (8) + S43 €0S” () = 843 - (S43 - S12) sin” (0)

Poisson’s ratios are:
— . 2
Vo1 = - [S12 + (S43 - S12) Sin® ()] / 844

V31 = - [S13 - (S13 - S12) sin’ (0)1/ 844




When 6 = 0,
Va1 = - S12/ 8¢

Va1 = - Sq3/ 844
When 6 = n/4,
Va1 = V31 = - (S12+ S13) /2 841

2) Longitudinal extension at an angle y from the basal plane; the x, axis in
the basal plane: 6 =0 ; y arbitrary.

Direction cosines are: a,, = 1; aj1 = az3 = ¢(y); - 513 = a1 = s(y)
Rotated compliances are:
S1" = Sqq [CH W)+ 5338 ()] + (Sas + 2 513) [*(w) s*(w)]
Stz =S4 [P(W)] + S13 [S5(W)] = 12 + (S13 - S12) [s%(w)]

S13’ = S13 + S, [C3(y) ST (W)L, 82= (S11 + S33 - (Sas + 2 S13)

Poisson’s ratios are:

Va1 = - 812"/ Syy’

V31 = -S43 /844’
When y = /4,

Va1 = -2 (S12 + 813) / (So + Saa)

V31 = - (So- Sas) / (So+ S44) 5 So= (S11 + S33+ 2 S13)
When y = /2,

Va1 = V3q = - 843/ S33

Poisson’s ratio is isotropic when the longitudinal extension is along the six-fold
symmetry axis.
7




3) Longitudinal extension out of the basal plane: 6 and y arbitrary.
Direction cosines are:

[e(w)] [s(®)s(y) ] [ - c(0)s(y)]
[ 0] [ c®) ] [ s®) 1]
[s(w)] [- s(6)c(w)] [ c®)cv)]

Rotated compliances are:
S11' = 11 [$90)s”(w) + SE(W)I + 833 [¢* @) (w)] +
(844 * 2 513) [CEOS" WIS (O)S° (W) + ¢(w)]
812’ = 512 [CP(O)C%(w)] + 515 [s*O)c*(w) + s*(w)] +
s [c*(0)s *(O)s*(W)]
$13° = 812 [S90)] * 815 [C*(O)] + 5, [€*(©)c *(w)s*(W)]
Poisson’s ratios are:
Va1 = - 847 [ 847
Vaq = -843’ /Sq4
These results reduce to those of Case 1) wheny = 0, and to those of Case 2)
when 6 = 0.

4) Longitudinal extension at an angle y from the basal plane: first rotation
about x, by angle v, followed by a second rotation about x; by angle x.
Direction cosines are:

[ cly) ] [ 0] [-s(v) ]
[s(w)s()] [ c(x)] [ c(v)s()]

[s(w)c(x)] [-s(0] [ c(w)c(y)]




Rotated compliances are:

S11’ = 811 [C(W)] + 833 [8*(W)] + (Sas + 2 513) [X(W)s*(W)]

S12' = S12 [SA(W)S QO] + 845 [ (W)’ (0) + $°(0)] + 2 [S(w)s *(w)s ()]

$13' = S12 [CA(W)S* 001 + 813 [S*(w)s’(0) + €01 + 82 [€3(w)s 2(w)S* ()]
Poisson’s ratios are:

Va1 =-812 [ 844

V31 = -843' /84y
These results reduce to those of Case 1) wheny = 0, and to those of Case 2)
when ¢ = 0.
Bulk Modulus

The bulk modulus, or compressibility, x, is often associated with
considerations requiring use of the Poisson’s ratio. It is defined as the hydrostatic
pressure required to bring about a unit relative change of volume of a substance;
it is always positive. For solids of the most general anisotropy, x is found from the
relation '

[(S11+ S22+ S33) + 2 (Sp3 + 813+ 81x)] = 1/ k.
For the hexagonal system this reduces to:

[(2811+833) +2(283+84)]=1/x.

Application to Piezoceramics

The poling state of piezoceramics nearly always encountered in present
commercial practice is either parallel, or lateral, to the major surfaces of the
device. This is because the effective piezoelectric coupling is thereby maximized
by the electrode placements. Newer configurations, currently under development
for microelectromechanical structures (MEMS) applications, utilize more general
orientations that take advantage of the achievable differences in Poisson’s ratios
in different directions. Table 2 gives some representative examples, based on the
relations derived above; entries are computed from data in Refs. 6 and 7.

9




TABLE 2. POISSON'’S RATIO, YOUNG’S MODULUS, AND COMPRESSIBILITY
OF SELECTED PIEZOCERAMICS.

COMPOSITION 0°° | Vo | var | Y X
Ba Ti O, 0.0 |0.305]0.333|117.0 | 106.3
PZT-4 450 | 0380|0380 | 81.3| 929
PZT-5A 045 | 0380|0392 | 586 89.1
PZT 52/48 4545 [ 0.401 | 0.354 | 63.7| 935
PZT 65/35 0,0 |0.290|0.395|110.3| 956
Pbg 76 Cag 4 Ti O3 450 | 0.399 | 0.399 | 136.1 | 69.6
Pbo.os LA os T1 O 045 |0.232 |0.163 | 147.2 | 81.4
Pbg go Ndg 11 Ti O3 4545 | 0.235 | 0.262 | 149.4 | 94.0

[Y and k in GPa]
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Conclusions
Poisson’s ratio, with respect to rotated coordinate axes, for hexagonal
materials, and particularly, poled ferroelectric ceramics, has been obtained. All
results are independent of rotations about the six-fold axis. A number of simple
cases are of particular interest:
® For longitudinal extension in the basal plane, y = 0:
When 0= 0: vy =-812/841; V3 =-843/8y4
When 0 = n/4: vy = va3y = - (S12+ S43) / 2 844
° For longitudinal extension at an angle y from the basal plane:
When 6 =0; y =71/4: voy = -2 (S12 + 843) / (Sg + S4a)
Va1 = - (So- S44) / (Sot Saa) ; So=(S11 + 833+ 2 8y3)
When 6 = nt/4; y = /4. s,= (S11 + Sa3 - (Saa + 2 S43))
Vor = -[4812+12813+25,]/[1251 +4833-3 8;)
V31 =-[8S1,+ 8813+ 8]/ [12511 + 4 533- 3 5]
When y = 7n1/4; y = 7/4: $5= (S41 + S33 - (Saa + 2 S43))
Va1 = V31 = - [S12+ 3843+ 85/ 2] /[2 (841 + S33) - 8]
o For longitudinal extension along the six-fold axis:

V21 = V31 = - 843/ 833

11
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